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Abstract-The transport equations for Reynolds stress and heat flux in turbulent flow with streamline 
curvature are closed by modelling the redistributive terms in a manner which reflects the modification of 
the fluctuating pressure field by the presence of a wall. A set of algebraic equations is derived for thin 
shear layers with moderate curvature from which the effects of curvature on the mixing-length and the 
turbulent Prandtl number are deduced. Calculations show that heat transfer is appreciably less affected 

by streamline curvature than is shear stress. 

NOMENCLATURE 

c,,c,,..., constants in turbulence model ; 
k turbulence kinetic energy; 

6 turbulence length scale or mixing length ; 
1 03 mixing length in plane flow ; 
4 unit vector; 

p, production rate of turbulence energy; 

pij, production rate of Reynolds stress uiuj ; 
Pi;., part of production rate of heat flux 

containing mean strain; 

P> fluctuating part of the pressure; 

r, radius of curvature of streamlines or 
position vector; 

S, curvature parameter; 

4 time ; 
u, circumferential mean velocity component ; 
u, u, w, fluctuating velocity components; 
x, y, z, spatial co-ordinates. 

Greek symbols 

coefficient in mixing-length modification 
for curvature; 
eddy-viscosity coefficient ; 
mean temperature; 
fluctuating temperature; 
coefficient in algebraic stress model ; 
turbulence-energy dissipation rate; 
temperature-variance dissipation rate; 
eddy-diffusivity coefficient ; 
turbulent Prandtl number; 
pressure-rate-of-strain or 
pressure-temperature gradient 
correlations in Reynolds stress and 
heat-flux equations, or algebraic 
model coefficients. 

1. INTRODUCTION 

THE TURBULENCE in thin shear layers is known to be 
highly sensitive to streamline curvature in the plane 
of the mean shear. Turbulent transport of heat and 
momentum is reduced by curvature when the 

angular momentum of the flow increases in the 
direction of the radius of curvature and is increased 
when the angular momentum decreases with radius. 
In contrast to Iaminar flow, where the fractional 
change due to curvature in, for example, the shear 
stress is of the same order as the ratio of the shear 
layer thickness to the radius, turbulent flow measure- 
ments show fractional changes an order of magni- 
tude greater. The effects of curvature on a thin shear 
layer in turbulent flow can therefore be significant 
for radii of order one hundred times the shear layer 
thickness. An extreme case is the observed extinction 
of the turbulent shear stress in flow over a strongly 
curved convex surface. These effects are important in 
many flows of engineering interest. A good example 
is the turbomachine blade where the effects of 
curvature may reduce the skin friction and heat 
transfer on the convex surface by as much as ten or 
twenty per cent in a typical case and increase these 
quantities by a similar amount on the concave 
surface. 

Nearly all attempts to account for streamline 
curvature effects in calculation schemes have in- 
volved empirical modifications to eddy-viscosity 
formulae developed for flows with insignificant 
curvature. In particular, many workers have used 
Bradshaw’s [l] modification for the mixing length, 1: 

1 = I,(1 -crS)/(l -S) (1) 

where I, is the mixing length appropriate to plane 
flow and S is a curvature parameter defined as: 

S=A!Y!!L. 
a ujaz (2) 

Here U is the mean circumferential velocity com- 
ponent, r the radius of curvature and z the co- 
ordinate distance normal to the streamlines. LY in 
equation (1) is an empirical constant of order 10. 
This treatment has proved to be reasonably success- 
ful (see Foloyan and Whitelaw [2] for a useful short 
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survey of recent applications) but it is limited by the 
need to prescribe not only I, but also a differently for 
different flows [ 11. 

This difficulty is avoided in the two-equation 
closure proposed by Launder et al. [3) where a 
length-scale distribution is obtained from the so- 
lution of modelled equations for the turbulent kinetic 
energy and its dissipation rate. The energy pro- 
duction rate due to extra strain associated with 
curvature appears in exact form in the energy 
equation, but curvature effects have to be modelled 
empirically in the dissipation equation. 

The development of multi-equation models may 
have been inhibited by the view that there is 
insufficient experimental evidence to justify closures 
which are significantly more complex than those at 
eddy-viscosity level. On the other hand it can be 
argued that low-level closures cannot adequately 
account for all the effects of extra strain in complex 
shear layers. 

There is a fairly close analogy between the effects 
on thin shear layers of streamline curvature and 
buoyancy [4]. Multi-equation models have been 
widely used (e.g. [S-7]) for calculating buoyancy- 
affected turbulence since Reynolds stresses and heat 
fluxes are affected by buoyant production in a fairly 
complicated way not easily accounted for by a 
simple eddy-viscosity formulation. Mellor [8] has in 
fact used the same stress-closure approximations for 
both types of flow to produce, for curved flow, a 
function modifying the eddy viscosity. Irwin and 
Smith [9] simplified the stress-closure of Launder et 
al. [lo] to calculate the development of boundary 
layers and wall jets on curved surfaces with generally 
good agreement with experiment. The most impor- 
tant result to emerge from this study was’that the 
observed curvature effects could be accounted for by 
the relatively small production terms appearing in 
the individual Reynolds-stress equations. 

Scarcely any attention has been given to the 
problem of heat transfer in flows affected by 
curvature. In the absence of experimental evidence to 
the contrary a constant turbulent Prandtl number 
has usually been assumed for eddy-viscosity models. 
Now in stratified flow the turbulent Prandtl number 
is found to be strongly affected by buoyancy and 
there is every reason to expect a similar dependence 
on curvature. The direct application of buoyant-flow 
data would probably put too large a strain on the 
buoyancy/curvature analogy and it is only by 
closing the turbulent heat-flux equations that the 
behaviour of the turbulent Prandtl number can be 
predicted. Turbulence modelling at this level of 
closure seems not to have been attempted for curved 
flow; in Mellor’s [S] treatment only the stress 
equations of the stratified-flow model were used for 
curved flow. 

The present study has been prompted by the need 
for accurate prediction methods for flow over curved 
surfaces and the realisation that the effects of 
curvature on heat transfer could only be accounted 

for by modelling the Reynolds-stress and the heat- 
flux equations. The model used is that originally 
developed for buoyancy-affected turbulence by 
Gibson and Launder [l 1,121 and the approximations 
made to close the Reynolds stress equations are 
similar to those of [9] and [lo] for free shear ffows. 
The influence of the wall on the fluctuating pressure 
field is modelled rather differently and although the 
wall-damping effects are still expressed through a 
length-scale function this is modified as in equation 
(1) to take account of curvature. Studies of stratified 
wall flow [12] showed that this modification was 
essential if the effects of buoyancy on the normal 
stress ratios were to be accurately predicted and 
there is no reason to suppose that the turbulence m 
curved flow will respond very differently. The heat- 
flux equations are treated in a precisely parallel way 
with appropriate modifications for wall damping. 
Use of the algebraic stress and flux modelhng 
technique enables the turbulent Prandtl number and 
the heat-flux correlation coefficient to be expressed in 
terms of the curvature parameter S. It is found that 
the turbulent Prandtl number decreases with increas- 
ing S, that is with increasing convexity. This implies 
that turbulent heat transfer is less affected by 
curvature than is the shear stress, a result which 
contrasts sharply with predictions and data for 
stratified flow in which the turbulent Prandtl 
number increases with increasing stability. 

2. TURBULENCE MODEL FOR BOUNDARY-LAYER 
FLOWS WITH SMALL CURVATURE 

2.1. The Reynokis stress equrrtiotrs 
Consideration IS restricted to two-dimensional 

incompressible flows in which the curvature of the 
mean streamlines is small. Transport equations for 
the Reynolds stresses are obtained from the 
Navier-Stokes equations as described in [l]. For 
boundary-layer flow at Reynolds numbers high 
enough for the small scale motion to be assumed 
isotropic the Reynolds stress equations are [9] : 

(4) 

where E is the turbuIent-energy dissipation rate, p is 
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the fluctuating part of the pressure, p is the density 
and : 
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P is the production rate of turbulent energy which, 
when the acceleration term is again omitted, is seen 
from equation (8) to be: 

The transport equation for turbulent energy, k, is 
obtained by adding equations (3) (4) and (5): 

- 

I au - au v - (i7-l;i)dx+uw x-7 ( il --E (7) 

where k’ is the fluctuating part of k. Terms involving 
the longitudinal acceleration au/ax contribute to the 

production of z, w2 and k. These terms are often 
ignored in modelling plane flows but, since they are 
of the same order as the production terms involving 
Ufr, they ought logically to be included when the 
effects of curvature are considered. However, since it 
seems improbable that the two effects are signi- 
ficantly coupled, at any rate for mild curvature, and 
the study of Irwin and Smith [9] suggested that the 
turbulence structure is much less sensitive to the 
effects of acceleration than to those of curvature, 
these terms will be discarded in the present study as 
they were in [9]. 

To convert equations (3)-(6) the mean-flow 
momentum equation, and the continuity equations 
into a closed set for U, W and the Reynolds stresses, 
the turbulence quantities on the RHS of (3)-(6) must 
be expressed in terms of the mean velocities and the 
Reynolds stresses, The main obstacle to closure is 
presented by the pressure-strain correlation appear- 
ing as the second term in each of the stress 
equations. It can be shown (e.g. [lo]) that two kinds 
of interaction give rise to these correlations: one 
involving only turbulence quantities and another 
arising from the presence of the mean rate of strain. 
If these terms are denoted by 4ij and tensor notation 
is used for brevity: 

where 

The two components of ~ij are modelled as in [l 11 
and [12]: 

~ij,l = - C, ’ (Uiuj - fsijk) 
k 

di1.2 = - C2 (Pij -~6ijP) WY 

where Pij is the production rate of uiuj which 
appears as the third term on the RHS of equations 

(3)-(6) and is zero in the f equation (4). Thus, in the 

equation for u2, with the term containing aU/ax 
neglected : 

p 
11 

= -2G E+U’. 
( ) 
aZ r 

p=_Eav LJ’ ( ) az -7 = -uw+). (11) 

C, and C, are constants for high-Reynolds-number 
turbulence which are determined by reference to 
plane-flow data. 

In a simple shear flow the proximity of a rigid wall 
modifies the fluctuating pressure field so as to 
impede the transfer of energy from the streamwise 
direction to that normal to the wall. The relative 
magnitude of the shear stress is also reduced. Shir 
[13] proposed the following addition to #I~~,, to 
account for near-wall effects: 

- 
$jj, = C, E (~~lmn~n~~,~-$u~u~n~n~ 

k 

-$4~Uj?lk?lJf 

( ) 

&‘ . (12) 
I I 

hi is the unit vector normal to the surface, ri is the 
position vector (not to be confused with radius of 
curvature) and I is some suitable turbulence length 
scale. In [12] the idea expressed by equation (12) 
was applied also to the mean-strain component, dije2 
as: 

-34jk.2Wi)f l-‘ 

( 1 
niri (13) 

where C; and C; are constants chosen to give the 
right stress levels in the uniform-stress layer close to 
a plane wall. 

The transport terms are treated by the technique 
known as, alg%aic stress modelling [14]. The net 

transport of uiuj is assumed to be proportional to 

the net transport of k multiplied by the factor u,u,/k. 
Thus: 

= !!fi (p-E) 

where g(uiuj) denotes diffusion of G: 

I 

and 

. 

(14) 

This treatment appears to be reasonably accurate 
for thin shear layers except near an axis of symmetry. 

Substitution of the model assumptions yields the 
following set of algebraic equations for the Reynolds 
stresses : 
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- k--au 
uw = -P-w’-. 

& a2 (19) 

The coefficients 4 are functions of the model 
constants. The length scale function appearing in 
equatidns (12) and (13) is written simply as f and : 

41 = (I--C2-C;C,fwj (20) 

42 = (l-C,+ZC;CJ)/h (21) 

43 = (2-2C,+2C;C,f)/h (22) 

$4 = (2-2C,+C;C,f)/6 (23) 

4s = c;fP (24) 

f& = 2c;GfP (25) 

4, = (2-2C,+4C;C,f)/6 (26) 

8=mi’+jS~ (27) 

4 = (l-C2+1.5C;C,f)/(6f1.5C;f) (28) 

&=c,++ (29) 

The form of the wall-damping function f (l/z) must 
now be specified. This quantity must of course 
vanish in turbulence unaffected by the presence of a 
wall, when l/z is zero. It is assumed, as in earlier 
work [IO, 121, that f is directly proportiotial to l/z, 
and it is convenient to choose the’ co&ant of 
proportionality such that the function is unity in 
near-wall turbulence. A suitable length scale charac- 
teristic of the energy-containing motion may be 
formed from the shear stress and dissipatioti rate as: 

, E (-uw)3’2 
& . 

(30) 

In plane flow this is the mixing length which is equal 
to kz near a plane wall. Thus f may be defined by: 

f=& (31) 

so that, for plane flow subjected only to the simple 
strain aU/az, f is unity close to a wall and 
appioaches zero in the outer region. 

Now while the extra strain associated with mild 
streamwise curvature alters the production rate of 
turbulent energy, equation (11), by the factor (1 -S), 
the observed effects on the shear stress are much 
greater. According to Bradshaw [l] the change is 
what would be predicted by a simple turbulence 
model if the production terms had changed, not by 
the factor (1 -S) but by a factor (1 --as), where CI 

varies from case to case but is always of order 10. 
Examination of the production terms in the shear- 
stress equation (6), and the form of the coefficient /3 
arising from the model approximations, shows this 
factor to be: 

l- $-1’S, 
!l ) 

Bradshaw’s analysis for local-equilibrium turbulence 
shows how the effect on the length scale may be 
accounted for by multiplying the mixing-length 
distribution for plane flow by the factor (1 -as)/ 
(1 -S). Combination of this result with equation (31) 
produces for the wall-damping function: 

l-as 
f=,_, (32) 

in which: 

u2 
a=2=--1. 

W2 
(33) 

The modelled equations contain four empirical 
constants which are assigned the values determined 
in [12] from plane-flow data: (C,, C,, C;, C;) 
= (1.8, 0.6, 0.5, 0.3). The stress levels then obtained 
for local-equilibrium turbulence (P = E) in plane 
flows are shown in Table 1. For free flow with f = 0 

Table 1. Comparison of measured and calculated Reynolds 
stresses in plane equilibrium shear flows, P/s = 1 

u2 7 w2 uw 
_ -_ 

k k k k 

Plane homogeneous shear layer 
experimental data [lS] 0.97 0.54 0.49 0.33 
model results 0.96 0 52 0.52 0.34 

Near-wall turbulence 
a consensus of data [lo] 1.17 0.59 0.24 0.24 
model results 1.10 0.65 0.25 0.26 

these correspond closely to the measurements of 
Champagne et al. [ 151 in a plane homogeneous 
shear layer and, for f = 1, to the consensus of near- 
wall turbulence data cited in [lo]. 

The turbulence model developed so far consists of 
a set of algebraic equations (15)-(17) for the normal 

stress components u,u,/k, and a gradient-diffusion 
expresSion (19) for the shear stress. These equations 
contain two scalar properties of turbulence as 
unknowns: k and E. The former can be obtained by 
solving the differential transport equation (7) using 
the turbulent viscosity implied in (19) to model the 
diffusion term. The dissipation rate can also be 
found, in principle, from the solution of an approxi- 
mated transport equation. Alternatively, equation 
(30) may be used to determine E from a specified 
length-scale distribution modified for curvature ef- 
fects as suggested by (32). 

In the present study, however, attention is con- 
fined to the algebraic equations. The turbulent 
energy and dissipation rate remain as unknowns, kJe 
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defining a characteristic time scale, and there is no 
need to specify the length scale since 1 is used only to 
define the wall damping function which is given 
explicitly by equation (32). The calculations are 
restricted to local-equilibrium turbulence for which 
P/E is unity. 
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where P;. and E;, are the rates of production and 

dissipation of the temperature variance f. These 
model approximations are used to transform equa- 
tions (34) and (35) into the following algebraic 
expressions for the turbulent heat fluxes: 

2.2. The heat-flux equations 
The transport equations for the heat fluxes are 

obtained by multiplying the equation for the in- 
stantaneous temperature (T+y) by ui and that for 
(U, + u,) by y. The resulting equations are added and 

averaged to yield equations for u,~ which, for a thin 
shear layer and to the same level of approximation 
implied in (3)-(6), are written: 

D& S- 1 P%J -= 
Dt 

-$4Wy+p-- 
1 + z/r p dx 

(35) 

The fluctuating pressure-temperature-gradient 
correlations appearing as the second term on the 
RHS of each equation are modelled in an exactly 
parallel way to the equivalent terms in the stress 
equations. Each can be shown [16] to consist of two 
components, one involving only turbulence cor- 
relations and the other containing the mean rate of 
strain. These are denoted by 4,; and modelled as in 
[ll, 121 as: 

c&J = -cl+ (37) 

4{,,,2 = -C2;pi: (38) 

where Pi;, is that part of the production rate of G 
which contains a component of mean strain. If the 
effects of longitudinal acceleration are again ignored, 

P,;. = -uy(XJ/&+ UJr) and P,: = 2uy U/r. 
The near-wall modifications equivalent to equa- 

tions (12) and (13) are: 

(39) 

(40) 

The “algebraic heat-flux model” corresponding to 
equation (14) is [ 11) : 

DG - 
L- P(UiV) 

Dt 

=p (@)0.5 _C&@)‘= 1 - - 
=$(p-E)+$(P.,-E;) (41) 

where 

cj;, = (b;,(i -C,,)(l +S) (45) 

4,1 = &(1+4;.c;,f 1-1 (46) 

&, = 24;,S(l -C,;+C,;C;;f ). (47) 

Three of’ the four constants may be fixed by 
reference to heat-transfer data from high-Reynolds 
number turbulence in plane flow. The values recom- 
mended by Gibson and Launder [12] are: (C,,., Cz,., 
C;,) = (3.0,0.33,0.5). 

These were chosen to give values of the turbulent 
Prandtl num&r in plane flow of 0.67 and 0.92 for 
free and near-wall turb&nee respectively. It will be 
noted that wall-suppression effects are absent from 

the equation for G and for plane flow only C’,: 

appears in the G equation. The wall modification 
involving the mean strain rate appears only for flow 
over a curved surface and the constant C;;, cannot, 
therefore, be evaluated from plane-flow data. Calcu- 
lations for curti and buoyant flow show that this 
term appears’to-xercise little influence and so, in the 
absence of more definite information, C;, has been 
set equal to zero. 

The two heatlflux equations (42) and (43) contain, 
as additional unknowns, the mean-square tempera- 
ture fluctuation and &issipation rate. The equation 

for f is the s&nple&t of All turbulence transport 
equations and its solution presents no difficulty 
provided that E) can be modelled satisfactorily. An 
exact transport equation for E, can be derived [16] 
from the Navier-Stokes equation but a satisfactory 
modelled form has yet to be developed. The usual 
practice is to express E;. in terms of E through 
equation (53) below. In the present study of local- 
equilibrium turbulence the production and dissi- 

pation rates of y2 are assumed equal so that the term 

containing f, equation (44), vanishes. y2 will, 
however, be approximated later in order to form a 
correlation coefficient. 

3. RESULTS AND DISCUSSION 

3.1. Effects of curvature on the Reynolds stress 
The extra strain rate U/r associated with stream- 

line curvature contributes to the production of 
Reynolds stress through the terms appearing in the 
exact transport equations (3)-(6). When S is positive 
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the direct effect is to diminish the shear stress and 
turbulence energy relative to the corresponding 
plane-flow values. In conditions of strong stabilising 
curvature the shear stress falls to zero at a critical 
value of S predicted by the model to be 0.17 for the 
particular case of local equilibrium turbulence. This 
figure agrees reasonably well with the critical value 
of 0.15 found by So and Mellor [17] in strongly 
curved convex wall flow. It is argued that wall- 
damping effects are negligible for strong convex 
curvature and the critical value of S is independent 
of the form of the length scale function f. As was 
shown by Irwin and Smith [9] the observed 
bebaviour of the shear stress is sensitive to the values 
of the normal stresses and can be attributed to the 
extra production terms in the stress equations. For a 
local equilibrium flow unaffected by the presence of a 

OE 
\ 

\ 
\ 

07- '. - Near wall 

OZ- 

Ol- 

s 
FIG. 1. Predicted variation with S of the shear-stress and 

normal-stress ratios for local equilibrium turbulence. 

wall the model predicts a fall in the normal stress 
-- 

ratio w2/u2 from 0.54 with zero curvature, S = 0, to 
0.29 at the critical S = 0.17. The predicted variation - 
in free flow of the normal stress ratio and uw/k with 
S is shown in Fig. 1. 

The predicted behaviour of the normal-stress ratio 
in convex wall flow, also shown in Fig. 1, is strikingly 
different although, not surprisingly, it is similar to 
that in stably-stratified flow [12]. It must first be 
observed that one effect of wall damping in plane 

flow is to depress 2 relative to 2 so that the ratio is 
only about one half that in a plane homogeneous 
shear layer, (Table 1). Now in flow over a convex 
wall the normal stresses are subjected to opposing 
influences. The direct effect of curvature, expressed 
through the production terms, is to diminish the 
stress ratio as in free curved flow. At the same time 
the wall-damping effect itself is reduced by convex 
curvature so that the normal stresses tend to revert 
to their free-flow values. This is what is implied by 
the near-wall modifications to the pressure-strain 
terms in equations (12) and (13), and the observed 
behaviour of the length scale, equation (1). The 
model predictions for near-wall turbulence show 
-i-Z w /u increasing with increasing positive S to the 
free flow value of 0.29 at the critical curvature where 
the shear stress collapses. 

The predicted variation with S off and fl is shown 
in Fig. 2. The coefficient CL in the length scale 
function, given by equation (33), varies from 7.87 for 
small curvature to 5.85 at the critical condition of 
vanishing shear stress. These values may be com- 
pared with Bradshaw’s [l] recommendations for 
wall flows which range from u = 6 for a wall jet on a 
convex surface to u = 14 for a boundary layer on a 
convex surface. The comparison is not an exact one 
since the data examined by Bradshaw were not 
extensive enough to warrant correlations of c( as 
functions of distance from the wall. These recom- 
mendations must be treated as global values in 
contrast to the results of the present study of the 
near-wall region. Additional support is provided by 
data from buoyancy-affected turbulence although it 
is probably unwise to rely too heavily on the 
buoyancy-curvature analogy. G( values in the range 
7-10 fit the wind-tunnel measurements of Arya and 
Plate [18] while the atmospheric surface-layer data 

‘0120 
- Near wall 

-- Free flow 

S 

FIG. 2. Predicted variation with S of the length scale function f and the eddy-viscosity coefficient p for 
local equilibrium turbulence. 
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reviewed by Busch [I91 suggest values ranging from 
4.7 to 7.0. 

The convex-wall measurements of So and Mellor 
f173 may be cited in at least partial support of the 
predicted behaviour of the normal-stress ratio. From 
the initial, flat, approach flow to the point of 

vanishing shear stress the measured z/k in the near- 
-- 

wall region increased by roughly 30% and w2/u2 by 
roughly 70%. On the other hand the measurements 

show z/k decreasing from about unity to about 0.8, 
a trend not predicted by the model which gives this 
quantity as roughly constant for positive S. 

The algebraic heat-flux equations (42) and (43) 
can be combined to give a ~adient-transfer ex- 
pression for the cross-stream heat flux: 

from which, using the parallel expression (19) for the 
shear stress, the turbulent Prandtl number can be 
obtained as: 

where 

k Pjs 

T7l-S. 

(49) 

The predicted variation of q and ul with S for local 
equilibrium turbulence is plotted in Fig. 3. The eddy- 

- New *all 

-- Free flow 

FIG. 3. Pmdicted variation with S of the eddy-diffusivity 
coeftkient q and the turbulent Prandtl number a, for local- 

equilibrium turbulence. 

diffusivity coeffkient q appears to be virtually 
unaffkcted by destabiiising curvature (S c 0) but falls 
with positive increasing S to zero at the critical 
curvature where the shear stress vanishes. The 

decrease in turbulent Prandtl number with increas- 
ing S reflects, ~~icul~ly for wall-flow, the pa&Id 
behaviour of the eddy-viscosity coefficient /?. The 
implication is that the heat flux is si~fi~tly less 
a&&d by streamline curvature than is shear stress, 
as may be deduced from the relative magnitude of 
the extra-strain production terms in the transport 

equations for G and &. The factor ,multiplying the 
plane-flow production rate of heat flux reduces to, 
after some manipulation: 

-- 

I-2 “““S -- ” 
*I wy w2 

When the plane wall-flow data used to establish thk 
model constants are substituted the coefficient on S 
turns out to be about 4.6, or only about 60% of the 
value of a in the factor (1 --a@ multipl~ng the 
shear-stress production rate. In buoyancy-affected 
turbulence the opposite situation arises. The exper- 
imental data and the model predictions of Gibson 
and Launder [ll, 121 show that 6, invariably 
increases with increasing stability. Buoyancy pro- 
duction of heat flux is relatively greater than that of 
shear stress although the effect is not so easily seen 
because the coupling between the transport equa- 
tions for buoyant flow is to diminish the tendency of 
CT, to increase with increasing stability to the extent 
that it becomes approximately constant in strongly- 
stable conditions [12,19]. 

Some further manipulation of the model equations 
produces an expression for the cross-stream/ 
streamwise heat-flux ratio : 

G 7 B ==----. 
UY uw &G+(b;* 

(51) 

The model predicts that thik quantity decreases with 
increasing S as is shown in Fig. 4. Also plotted in the 

’ 

- Near wall 

-to - - Free flow 

-05 

-02 -01 0 0, 

s 
FIG. 4. Predicted variation with S of the heat-flux ratio and 

correlation coefficient For local equilibrium turbulence. 

figure is the heat-flux correlation coefficient which is 
obtainable as a result of further assumptions regard- 

ing the temperature variance ;;“. If it is assumed for 
flows in local equilibrium that the production and 

dissipation rates off also balance, i.e. that P, = E,, 
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the transport equation for yz reduces to: 

(52) 

where C. is twice the ratio of the time scales for 

temperature and velocity fluctuations: 

^ ..z 

The value of C,. is somewhat controversial at present 
but here, in accordance with earlier model studies 

[ll, 121, it has been taken as equal to 1.6. A little 
algebra produces the correlation coefficient as: 

(54) 

which is plotted against S in Fig. 4. The effect of 
curvature on C,. is unknown and cannot be predicted 
by the model. 

There seem to be no experimental data against 
which these conjectures may be tested. The 
supersonic-flow measurements of Thomann [20] 
showed that heat-transfer rates increased relative to 
flat-plate values on a concave surface and decreased 
on a convex surface. Since no skin-friction measure- 

ments were made the relative effects of curvature 
could not be ascertained. 

4. CONCLUDING REMARKS 

The model study suggests that the effects of 
streamline curvature on momentum and heat trans- 
fer are mainly due to the extra production terms 
appearing in the transport equations for Reynolds 
stress and heat-flux. It is further suggested that the 
influence of a solid wall on the turbulence is itself 
modified by curvature and that the effects of 

curvature on the turbulence structure, as expressed 
by the normal-stress ratio, differ significantly be- 
tween free and near-wall flows. The first conclusion 

was reached by Irwin and Smith [9]; the second is 
supported by the observed and predicted behaviour 
of stably-stratified buoyant flow [12] with which 

there is some analogy. 
The model produces an explicit form, equation 

(32), for the empirical, Monin-type. modification of 
the mixing length for curvature. Values of the 
coefficient LX, which depends upon the normal stress 
ratio, fall within the range recommended and used 

by other investigators [l]. 
It has been shown that the effects of streamline 

curvature on heat-transfer are probably significantly 
less than on shear stress. Thus the proportionate 
reduction of heat transfer on, for example, the 
convex surface of a turbine blade, may be expected 
to be less than that for skin friction. This is an 

important result which suggests that the usual 
practice of using a constant turbulent Prandtl 
number in prediction methods may well provide 
misleading estimates of the heat transfer from curved 

surfaces. 
The study also suggests a strategy for calculation 

methods and the type of model most suited for the 
prediction of curved flow. There seems to be no 
justification for full second-order methods, i.e. those 
involving numerical solution of the stress and heat 

flux equations. Two equation closures necessarily 
involve ad hoc modifications to the length-scale 
equations or its equivalent to take account of 

curvature. The present analysis can, however, con- 
veniently be used in a one-equation scheme. There is 
no difficulty involved in solving the turbulence 
energy equation for thin curved shear layers. The 

Reynolds normal stresses are then available from 
algebraic relationships, the length scale can be found 
and the energy dissipation rate calculated. The shear 
stress and heat flux are then calculated from 

gradient-transfer formulae in which the coefficients 
are functions of the degree of curvature and the 
variation of the turbulent Prandtl number is taken 
into account. Such a scheme would seem at the 

present state of the art to afford the best prospects 
for calculations. 

Attention is drawn to the lack of experimental 
data against which the conjectures of this study may 

be tested. There is an urgent need for more 
information in this field, particularly from flows with 

heat transfer. 
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MODELE ALGEBRIQUE DE TENSION ET DE FLUX THERMIQUE 
POUR UN ECOULEMENT TURBULENT AVEC COURBURE DES 

LIGNES DE COURANT 

R&m&--Les equations de transport des tensions de Reynolds et du flux thermique pour un ecoulement 
turbulent avec courbure des lignes de courant sont fermies en explicitant les termes de redistribution de 
facon a traduire la modification du champ de pression fluctuante par la presence de la paroi. Un systime 
d’equations algkbriques est etabli pour des couches minces avec courbure mod&r& pour d&ire les elfets 
de courbure sur la longueur de melange et Ie nombre de Prandtl turbulent. Des calculs montrent que Ie 
transfert thermique est sensiblement moins a&& par la courbure de la ligne de courant que par la 

tension tangentielle. 

EIN ALGEBRAISCHES SPANNUNGS- UND WARMESTROM-MODELL FUR 
TURBULENTE SCHERSTRGMUNG BE1 GEKRUMMTEN STROMLINIEN 

Zusammenfasauag-Die Transportgleichungen fiir Wandschubspannung und Warmestrom in turbulenter 
Striimung mit gekriimmten Stromlinien werden geschlossen dadurch formuliert, daB die redistributiven 
Terme in einer Weise modelbert werden, welche die Veranderungen des lluktuierenden Druckfeldes in 
Gegenwart einer Wand wiedergibt. Ein Satz algebraischer Gleichungen wird fur diinne Grenzschicht~ 
mit mtiiger Kr~mung aufgestell~ aus denen der Einflul3 der Kr~mung auf den Mi~hungsweg und 
die turbulente Pr~dtl-Zahl abgeleitet wird. R~hnungen zeigen, da8 der W~e~~rgang von der 

Stromlinienkr~mmung wesentlich weniger beeinflum wird als die Schubspannung. 

AJIIEEPAMYECKA5I MOAEJIb HAfIPIlmEHMFl I4 TEfUlOOT~AYM flflfl 
TYP6YnEHTHOl-0 IIOTOKA B113KOi? )KMAKOCTM HA KPMBOJlMHEHHOfi 

JIOBEPXHOCTM 

AHIIO~~II~ - YpaBHCHWI ITCpeHOCa ,WR HWlfmKCHBi? kiiHO.RbnCa H TeflJlOBOi-0 EIOTOKa np&i Typ6y- 
JWHTHOM Tf%etiU&i Ha KpNBONiH&HOk IlOBepXHOCTH 3aMbIKaiOTCff C IlOMOl.UbtO MOLleJIEi, j-fHTbiBa- 
KW& BaWiiHWC CTeHKH Ha W3MeHeHtie nynbCaU~OHHOr0 IIOnff ElBfleHWSL BblBeACHa CRCTeMkl 

anr~6pa~YecK~x YpaBHCH~~ RJlR OllHCitHUI1 nOrpaH~~HbiX CnO@B He60RbulOi? TOn~~Hbt H YMC~HHO~ 
K,,HBK3Hbl, H3 KOTOPblX MOmHO OIipeAWlHTb BJlHIlHWC Kp~B~3~bI Ha AJIkfHy IQ’TK CMCUICHWII H 

Typ6yfleHTHOe YWCJIO npaHnTJl% PaC’i&Tbl nOKa3blBaK)T. 9TO IlO CpaBHCHHlO C KaCaTCJlbHbIM HZ%lpFk 

~KeHUeM TeIIJlOO6MMeH 3HaSHTenbHO MeHbl.LE 3aBHCUT OT Kp~BOJlWHetiHOCTki 06TeKaeMofi ~OBC~XHOCTH. 


